
Math 31 – Homework 5 Solutions

Easier

1. Determine if each mapping is a homomorphism. State why or why not. If it is a homomorphism,
find its kernel, and determine whether it is one-to-one and onto.

(a) Define ϕ : Z→ R by ϕ(n) = n. (Both are groups under addition here.)

(b) Let G be a group, and define ϕ : G→ G by ϕ(a) = a−1 for all a ∈ G.

(c) Let G be an abelian group, and define ϕ : G→ G by ϕ(a) = a−1 for all a ∈ G.

(d) Let G be a group, and define ϕ : G→ G by ϕ(a) = a2 for all a ∈ G.

Solution. (a) Yes, this is a homomorphism. We clearly have

ϕ(n+m) = n+m = ϕ(n) + ϕ(m)

for all n,m ∈ Z. Since ϕ(n) = 0 if and only if n = 0, we see that kerϕ = {0}. Since the kernel is
trivial, ϕ is one-to-one. It is not onto, since the image consists only of the integers, which form a
proper subset of R.

(b) This is not a homomorphism. If a, b ∈ G, then ϕ(ab) = (ab)−1 = b−1a−1, which is not equal
to ϕ(a)ϕ(b) = a−1b−1 in general.

(c) When G is abelian, this map is a homomorphism. From the computation we did in part
(b), we see that

ϕ(ab) = b−1a−1 = a−1b−1 = ϕ(a)ϕ(b).

Note that if a ∈ kerϕ, then e = ϕ(a) = a−1, which means that a = e, and kerϕ = {e}. This implies
that ϕ is one-to-one. It is also onto: if a ∈ G, then

ϕ(a−1) = (a−1)−1 = a,

Thus ϕ is an isomorphism from G to G, or an automorphism of G.
(d) This is not a homomorphism in general. If a, b ∈ G, then ϕ(ab) = (ab)2 = abab, which is

not necessarily equal to a2b2. In fact, ϕ is a homomorphism if and only if G is abelian.

2. Consider the subgroup H = {i,m1} of the dihedral group D3. Find all the left cosets of H,
and then find all of the right cosets of H. Observe that the left and right cosets do not coincide.

Solution. The left cosets are

H = {i,m1}
r1H = {r1,m3}
r2H = {r2,m2},

while the right cosets are

H = {i,m1}
Hr1 = {r1,m2}
Hr2 = {r2,m3}.

These do not coincide. Note that in particular this shows that H is not normal in D3.
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3. Find the cycle decomposition and order of each of the following permutations.

(a)

(
1 2 3 4 5 6 7 8 9
3 1 4 2 7 6 9 8 5

)

(b)

(
1 2 3 4 5 6 7
7 6 5 4 3 2 1

)

(c)

(
1 2 3 4 5 6 7
7 6 5 3 4 2 1

)(
1 2 3 4 5 6 7
2 3 1 5 6 7 4

)
Solution. (a) The cycle decomposition is

(1 3 4 2)(5 7 9).

Since the cycles have length 4 and 3, the order of this permutation is 12.
(b) The cycle decomposition is

(1 7)(2 6)(3 5),

and the order is clearly 2.
(c) We’ll decompose both permutations into disjoint cycles, and then multiply them. The first

is
(1 7)(2 6)(3 5 4),

and the second is
(1 2 3)(4 5 6 7).

Therefore, the product is

(1 7)(2 6)(3 5 4)(1 2 3)(4 5 6 7) = (1 6)(2 5)(3 7).

Again, the order is simply 2.

4. Determine whether each permutation is even or odd.

(a)

(
1 2 3 4 5 6 7 8 9
2 4 5 1 3 7 8 9 6

)
(b) (1 2 3 4 5 6)(7 8 9)

(c) (1 2 3 4 5 6)(1 2 3 4 5 7)

(d) (1 2)(1 2 3)(4 5)(5 6 8)(1 7 9)

Solution. (a) We’ll first convert the permutation to cycle notation, and then write it as a product
of transpositions:

(1 2 4)(3 5)(6 7 8 9) = (1 4)(1 2)(3 5)(6 9)(6 8)(6 7).

We can see that this permutation is even.
(b) In terms of transpositions, we have

(1 6)(1 5)(1 4)(1 3)(1 2)(7 9)(7 8),
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so the permutation is odd.
(c) The first cycle is the same as in the previous part, so we just need to know the parity of the

second:
(1 7)(1 5)(1 4)(1 3)(1 2).

This is odd, as is the first cycle, so the whole permutation is even.
(d) By now you’ve probably noticed that a 3-cycle can be written as a product of two trans-

positions, so it is even. We have three 3-cycles and two transpositions, so the permutation is
even.

5. Let G and G′ be groups, and suppose that |G| = p for some prime number p. Show that
any group homomorphism ϕ : G → G′ must either be the trivial homomorphism or a one-to-one
homomorphism.

Proof. Let ϕ : G → G′ be a homomorphism. We know that kerϕ is a subgroup of G, so its order
must divide |G| by Lagrange’s theorem. Since |G| = p is prime, we must have either |kerϕ| = 1 or
|kerϕ| = p. In the first case, kerϕ = {e}, so ϕ is one-to-one. In the second case, kerϕ = G, so ϕ
must be the trivial homomorphism.

Medium

6. [Saracino, #12.13 modified] Let ϕ : G→ G′ be a group homomorphism. If G is abelian and ϕ
is onto, prove that G′ is abelian.

Proof. We need to show that if x, y ∈ G′, then xy = yx. Since ϕ is onto, we can write x = ϕ(a)
and y = ϕ(b) for some a, b ∈ G. We then have

xy = ϕ(a)ϕ(b) = ϕ(ab) = ϕ(ba),

since G is abelian. But then,
xy = ϕ(ba) = ϕ(b)ϕ(a) = yx,

so x and y indeed commute. Since x and y were arbitrary, G′ is an abelian group.

7. [Saracino, #12.3 and 12.20 modified] Let G be an abelian group, n a positive integer, and
define ϕ : G→ G by ϕ(x) = xn.

(a) Show that ϕ is a homomorphism.

Proof. Let a, b ∈ G. Then since G is abelian, we have

ϕ(ab) = (ab)n = anbn = ϕ(a)ϕ(b),

so ϕ is a homomorphism.

(b) Suppose that G is a finite group and that n is relatively prime to |G|. Show that ϕ is an
automorphism of G.
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Proof. We saw in part (a) that ϕ is a homomorphism, so we simply need to prove that it is
one-to-one and onto. To see that ϕ is one-to-one, suppose that a ∈ kerϕ, i.e., that ϕ(a) = e.
Then an = e, so o(a) must divide n. But o(a) also divides |G| by Lagrange’s theorem, and
since gcd(n, |G|) = 1, we must have o(a) = 1. Therefore, a = e, so kerϕ = {e}, and ϕ is
one-to-one. Since G is a finite group, any one-to-one map from G to G is necessarily onto.
Therefore, ϕ is an automorphism of G.

8. [Saracino, #12.33 modified] Let V4 = {e, a, b, c} denote the Klein 4-group. Since |V4| = 4,
Cayley’s theorem tells us that V4 is isomorphic to a subgroup of S4. In this problem you will apply
techniques from the proof of the theorem to this specific example in order to determine which
subgroup of S4 is matched up to V4.

Suppose we label the elements of the Klein 4-group using the numbers 1 through 4, in the
following manner:

e a b c

1 2 3 4

Now multiply every element by a in order, i.e.,

e a b c

1 2 3 4

a e c b

2 1 4 3

Then multiplication by a determines a permutation of V4 (by the proof of Cayley’s theorem). This
corresponds to an element of S4 via the labels that we have given the elements of V4. Do this
for every element x of V4. That is, write down the permutation in S4 (in cycle notation) that is
obtained by multiplying every element of V4 by x.

Proof. Certainly multiplication by the identity e yields the identity permutation ι. Also, we have
shown above that a corresponds to the permutation(

1 2 3 4
2 1 4 3

)
,

which is
(1 2)(3 4)

in cycle notation. Similarly, if we multiply every element by b, we have

e a b c

1 2 3 4

b c e a

3 4 1 2

which results in the permutation (
1 2 3 4
3 4 1 2

)
,

or
(1 3)(2 4)

in cycle notation. Finally, c yields
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e a b c

1 2 3 4

c b a e

4 3 2 1

which gives the permutation (
1 2 3 4
4 3 2 1

)
,

or
(1 4)(2 3).

Therefore, the subgroup of S4 which is isomorphic to V4 is

{ι, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Hard

9. [Saracino, #10.32 modified] Let G be a group with identity element e, and let X be a set. A
(left) action of G on X is a function G×X → X, usually denoted by

(g, x) 7→ g · x

for g ∈ G and x ∈ X, satisfying:

1. g1 · (g2 · x) = (g1g2) · x for all g1, g2 ∈ G and all x ∈ X.

2. e · x = x for all x ∈ X.

Intuitively, a group action assigns a permutation of X to each group element. (You will explore
this idea in part (d) below.)

Finally, there are two important objects that are affiliated to any group action. For any x ∈ X,
the orbit of x under G is the subset

orb(x) = {g · x : g ∈ G}

of X, and the stabilizer of x is the subset

Gx = {g ∈ G : g · x = x}

of G.

(a) (Warm up.) We have already seen that it is possible to view the elements of the dihedral
group D3 as permutations of the vertices of a triangle, labeled as below:

1 2

3
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Thus D3 acts on the set X = {1, 2, 3} of vertices by permuting them. Determine the orbit
and stabilizer of each vertex under this action.

Solution. Let’s start with the vertex 1. First note that if r1 denotes counterclockwise rotation
by 120 degrees,

r1 · 1 = 2,

so 2 ∈ orb(1). Also, r2 · 1 = 3, so 3 ∈ orb(1), and

orb(1) = {1, 2, 3} = X.

Similarly, you can check that
orb(2) = orb(3) = X

as well.

(b) (Another example.) Let G be a group, let X = G, and define a map G×X → G by

(g, x) 7→ g · x = gx

for all g ∈ G and x ∈ X, i.e., the product of g and x as elements of G. Verify that this defines
a group action of G on itself. (This action is called left translation.) Given x ∈ X = G,
what are orb(x) and Gx?

Proof. To see that this is a group action, we need to check that if g1, g2 ∈ G and x ∈ X = G,
then g1 · (g2 · x) = (g1g2) · x, and that e · x = x. For the first one, observe that

g1 · (g2 · x) = g1 · (g2x) = g1(g2x) = (g1g2)x,

since multiplication in G is associative. For the second, note that

e · x = ex = x

for all x ∈ X. Therefore, this defines an action of G on itself.

Now let x ∈ X = G. Then given any other y ∈ X, there exists g ∈ G such that g · x = y. In
particular, g = yx−1 works:

g · x = gx = (yx−1)x = y.

Therefore, every element of X belongs to orb(x), so

orb(x) = X

for all x ∈ X. (This says that the action is transitive.) Finally, note that if x ∈ X, then
g · x = x if and only if g = e, so

Gx = {e}

for all x ∈ X. (A fancy way of wording this is to say that the action is free.)

(c) Prove that for every x ∈ X, the stabilizer Gx is a subgroup of G.

6



Proof. Let x ∈ X. Clearly e ∈ Gx, since e ·x = x by definition. Now suppose that g1, g2 ∈ Gx.
Then

(g1g2) · x = g1 · (g2 · x) = g1 · x = x,

since g1 and g2 both belong to the stabilizer of x. Therefore, g1g1 ∈ Gx as well, so Gx is
closed. Finally, if g ∈ Gx, then g · x = x, so

g−1 · x = g−1 · (g · x) = (g−1g) · x = e · x = x.

Thus g−1 ∈ Gx, and Gx is a subgroup of G.

(d) Given a fixed g ∈ G, define a function σg : X → X by

σg(x) = g · x.

Show that σg is bijective, so σg defines a permutation of X. [Compare this to the proof of
Cayley’s theorem.]

Proof. To see that σg is one-to-one, suppose that x, y ∈ X with σg(x) = σg(y). Then

g · x = g · y,

so
g−1 · (g · x) = g−1 · (g · y).

But g−1 · (g · x) = (g−1g) · x = x, and similarly for y, so x = y and σg is one-to-one. Now
suppose that y ∈ X, and let x = g−1 · y. Then

σg(x) = g · x = g · (g−1 · y) = (gg−1) · y = y,

so σg is onto. Thus σg is a bijection.

(e) Recall that SX denotes the group of permutations of X under composition. Define a function
ϕ : G→ SX by

ϕ(g) = σg

for all g ∈ G. Prove that ϕ is a homomorphism. [Note: The proof of Cayley’s theorem is a
special case of this phenomenon, with G acting on itself by left translation.]

Proof. We simply need to check that ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G, i.e. that

σg1g2 = σg1 ◦ σg2 .

If x ∈ X, then

σg1g2(x) = (g1g2) · x = g1 · (g2 · x) = σg1(σg2(x)) = σg1 ◦ σg2(x).

Since x was arbitrary, we have σg1g2 = σg1 ◦ σg2 . Therefore, ϕ is a homomorphism.

Parts (d) and (e) above show that a group action gives an alternative way of viewing a group as
a collection of symmetries (or permutations) of some object. Cayley’s theorem provides a specific
example, where a group is viewed as a collection of permutations of itself. Group actions provide
one of the most interesting ways in which groups are used in practice.
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